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Abstract

Performance debugging of parallel and distributed applications can benefit from behavioral visualization tools helping to
capture the dynamics of the executions of applications. The Pajé generic tool presented in this article provides interactive and
scalable behavioral visualizations; because of its genericity, it can be used unchanged in a large variety of contexts.
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1. Introduction

In addition to the traditional debugging activ-
ity aimed at correctness, parallel and distributed
applications require some performance debugging.
Performance debugging is necessary since parallel
applications should perform as efficient as possible.

Performance debugging requires a large number
of performance indices to be measured. The ob-
jective of performance debugging is to reduce the
completion time of a certain application but the cor-
responding net-index can be decomposed into several
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sub-measures due to fractional time spent in various
parts of the application, such as procedures, commu-
nication protocols, etc. In order to reduce completion
times, programmers also need to know what percent-
age of the CPU-time goes into synchronization code,
communication or idling time, and all the mentioned
issues may be addressed from performance debug-
ging.

1.1. Performance monitoring

Performance data are collected by monitoring tools
which are mainly clock driven or event driven[4].
Clock driven monitoring amounts to having the state
of each observed process registered at periodic time
intervals by a second process which is independent of
the observed process. Tools such asgprof [7] belong
to this category. Clock driven tools are mainly used to
compute resource utilization rates. However, this sort
of tool may fail in finding the causes of overheads
in parallel and distributed programs: global perfor-
mance indices are of little help to discover bottlenecks
or to evaluate communication- or idling time. Such
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Fig. 1. Visualization from an execution trace. Events Start-send and End-send, are recorded when the send function is executed on node
1 and events Start-receive and End-receive when the receive function is executed on node 2.

information can be better obtained by event driven
monitoring approaches which include counting, tim-
ing and tracing.

The number of occurrences of certain events, e.g.
number of messages sent or received are computed
and recorded when counting is used. The time spent
in various parts of the programs, bounded by observed
events, is measured when timing is used. Tracing is
done by recording each of the observed events into a
performance trace. Each record includes the type of
recorded event as well as its time-stamp and several
optional parameters depending on which type of event
has occurred; for example asend message event is
likely to include the destination process (or thread) and
the size of the message. Tracing is the most general
event driven monitoring technique since it allows the
computation of all the performance indices that can
be obtained by counting or timing. In addition, per-
formance traces can be used to reconstruct the behav-
ior of parallel applications, which is often necessary
to help users to identify performance malfunction (see
Fig. 1). For more information on performance moni-
toring please, see Ref.[4].

1.2. Performance visualization

Monitoring of parallel and distributed applications
produces a large amount of data which can be used to
compute detailed performance indices. Visualization
is the technique most frequently used to present these
indices in a comprehensible way. In order to be help-
ful high-quality visualization needs to meet certain
criteria[9]. Among the most important are: scalability,

interactivity and extensibility. Scalability is the ability
to cope with large systems and long running appli-
cations. This becomes important with the growing
popularity of large-sized clusters of several hundreds
of interconnected off-the-shelf computers. Perfectly
scalable views are independent of the duration of the
monitored application or of the size of the observed
system and are therefore limited to statistical informa-
tion. Interactivity enables users to decide during the
visualization what they want to see next: “inspect” an
object to obtain more details, change the level of ab-
straction or the type of visualized data, etc. It is impor-
tant since it is not possible to represent within a single
display all the information of potential interest for
performance debugging. Extensibility gives the possi-
bility to extend the visualization tool with new func-
tionalities: processing of new types of performance
data, adding new graphical displays, visualizing new
programming models, etc. Extensibility is important
to cope with the evolution of visualization techniques
and parallel (distributed) programming models.

1.3. Overview of Pajé

The Pajé1 tool, described in the remainder of this
article, aims at visualizing the dynamics of large-scale
applications while providing characteristics such as
scalability, interactivity and extensibility. Such a
combination is very hard to achieve since behavioral
visualization tools are inherently non-scalable while

1 Paj́e is a word used by Tupi Indians to name a doctor or a
sorcerer.
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interactivity often contradicts scalability; in addition,
behavioral visualization tools include a simulation
module which most often depends on the program-
ming model used by the observed programs and
therefore hinders the extensibility of the tool.

Scalability is mainly provided by zooming and
filtering functionalities. Interactivity appears in most
functionalities: inspection of displayed objects, high-
lighting of the objects related to the object pointed
to by the mouse, moving back and forth in time,
zooming and filtering. Several characteristics of Pajé
were designed to provide a high degree of extensibil-
ity: modular architecture, genericity of the modules,
including the visualization and simulation ones. The
genericity property has so far allowed the use of Pajé
in various contexts such as to visualize the execution
of applications using a thread-based hierarchical pro-
gramming model, the execution of Java distributed
applications or the visualization of system data on a
large-sized cluster.

The next section gives surveys briefly existing vi-
sualization tools. The main functionalities of Pajé
are then described and exemplified in the following
sections. The flexibility provided by the generic char-
acteristic of Pajé is then illustrated by its use for
performance debugging of distributed Java applica-
tions and system administration of large-sized clus-
ters before a quick overview of ongoing and future
developments is given.

2. Survey of existing visualization tools

Several monitoring and visualization tools were
developed to support performance debugging of par-
allel applications. ParaGraph[8] produced a large
number of visualizations from traces collected by the
instrumented communication library PICL or by other
monitoring tools producing traces in PICL format.
Although having been the most widespread parallel
visualization tool for years, ParaGraph suffered from
the absence of interactivity, the lack of scalability
and the absence of extensibility due to a monolithic
implementation.

In the Pablo monitoring environment[13], a graph-
ical tool helps users to insert tracing instructions
in their applications. To be easily extensible, Pablo
is implemented as a data-flow graph of software

components, which can be connected using a graphi-
cal tool to produce a specific visualization tool. There
exist a large number of components to transform
data—arithmetic operations, statistical reductions,
etc.—or to perform various visualizations. Scalability
is provided by switching from tracing to counting
when the amount of monitored data becomes too
important and by providing only synthetic visualiza-
tions. Pablo is not interactive and does not provide
any behavioral representation of parallel executions.
Because users are requested to build a graph of com-
ponents to be able to use it, Pablo is sometimes
considered as difficult to use.

In SvPablo[6], monitoring is performed by count-
ing and timing techniques and is therefore scalable.
Scalability is also enforced by providing only visual-
ization of statistical data. The tool is interactive and
performance data are correlated with the source code
of monitored applications, allowing users to obtain
measurement data of, for example the time spent on
executing a given function call in an application. Sv-
Pablo is independent of the programming language
and of the target architecture of applications. Because
event traces are not recorded, it is not possible to vi-
sualize the behavior of the monitored applications.

Vampir [11] is a widespread commercially avail-
able toolkit2 for performance visualization of MPI
programs. To be scalable, Vampir provides several
filtering mechanisms, during monitoring (if Vam-
pirTrace is used to trace the application) or during
visualization. In addition, zooming functionalities are
available along the time-axis of space–time visualiza-
tions. Vampir is fairly interactive by allowing users to
check the source code having generated a given event
(source code click-back facility) and to open and close
new displays interactively. Being a commercial tool,
it is hard to know if it can be extended easily or not.

The objectives and functionalities of Virtue[14] go
far beyond those of the above mentioned tools. Virtue
aims at helping on the optimization of large-scale, ge-
ographically far distributed applications. In addition
to post-mortem analysis and optimization, Virtue pro-
vides on-line performance measurement and steering.
Virtue also aims at exploiting human sensory capa-
bilities. Data are presented and user interactions are
performed using virtual reality techniques: immersive

2 From Pallas GmbH.
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displays, tracking systems and spatialized audio. The
counterpart of these outstanding functionalities is that
they require a virtual reality studio to be used.

The main objective of Paradyn[10] is to search
for performance problems in long running programs
executed on a large number of Processing Elements.
To prevent users to be overloaded with performance
indices, the analysis is done automatically via a “Per-
formance Consultant” inserting instrumentation dy-
namically where and whenever needed. A graphical
interface with fixed-size (scalable) metric visualiza-
tion is presented to the user.

The initial objective of Pajé was to help perfor-
mance debugging of parallel applications running on
large-sized clusters. Helping means that it is done by
application programmers and not automatically. The
assumption behind this design choice is that, until fully
automatic tools become available, user driven perfor-
mance debugging tools will most likely remain useful.
To help application programmers to discover perfor-
mance problems in their applications, Pajé provides
behavioral representations of the dynamics of the ex-
ecutions of these applications. This choice implies to
use tracing as a monitoring technique and to visualize
the evolution of performance data along the time-axis.
These techniques are known to scale poorly because
the size of the monitoring and visualization data in-
creases with the size of the application and complex-
ity of the platform. In contrast to the usual limitations
of scalability in tracing, Pajé visualizations provide a
high degree of scalability because of interactive group-
ing and selection functionality. Pajé was also designed
to be easily extensible by tool developers while being
usable in a large variety of contexts. Another design
goal of Pajé was to be functional on “standard” PC
platforms and therefore to use “classical” interaction
techniques.

In the following sections, the properties of Pajé
will be exemplified by visualizing the execution of
parallel applications using a thread-based parallel
programming model—which can be considered as a
thread aware implementation of the standard com-
munication library MPI[2]. In this model, several
threads execute on each of the nodes, communicate
by shared-memory inside a node and by message
passing between nodes. Inner parallelism between the
processors of shared-memory symmetric multipro-
cessor nodes, used in many cluster architectures, can

thus be exploited efficiently while multiprogramming
of nodes allows the overlapping of communications
by computation. To provide a clear representation
of the behavior of parallel applications, a time line
representation of the activities and communications
of threads is mainly used, combining the information
contained in the classical “space–time” charts with
“Gantt chart” visualizations.

3. Extensibility

Extensibility is a key property of a visualization tool
since it is a very complex piece of software, which
is expensive to implement and should therefore have
a lifetime as long as possible. This will be possible
only if the tool can cope with the rapid evolution of
parallel programming models and visualization tech-
niques. The modular and generic characters of Pajé
were therefore major design goals.

3.1. Modular architecture

To favor extensibility, the architecture of Pajé
has been designed as a data-flow graph of software
modules or components communicating through
well-defined interfaces (seeFig. 2). According to
this scheme, it is therefore possible to add a new
visualization component or adapt to a change in the
trace format by changing the trace reader component
without having to change the rest of the environment.
This architectural choice was inspired by Pablo[13]
although there are important differences between
both tools. The behavioral visualizations of Pajé re-
quire a simulation component, not present in Pablo
which is also not interactive. To implement interac-
tivity, the graph of components of Pajé includes also
control-flow information, generated by the visualiza-
tion modules to process user interactions and trigger
the flow of data in the graph (see[3] for more details).

3.2. Genericity

Visualization tools providing behavioral visualiza-
tions, such as Pajé, are usually specialized for a given
parallel programming model. The reason is that they
include a trace driven simulator which usually depends
on the semantics of the programming model of the
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Fig. 2. Example data-flow graph. The trace reader produces event objects from the data read from the disk. These events are used by the
simulator to produce more abstract objects, like thread states, communications, etc. The filter component groups (seeSection 4) the thread
states to build a node state indicating whether some threads of the node are active or not: the event processed in the figure reduces the
number of active threads during the period where thread 6 remains blocked in the semaphore.

traced programs. This explains why tools such as Pablo
[13], focusing on extensibility, do not provide behav-
ioral representations: they do not include a simulator
and their modules perform mere data transformations.

Similar to Pablo, the modular structure of Pajé
makes it “easy” for tool developers to add a new
component or extend an existing one. However, since
Pajé includes a trace driven simulator, it was consid-
ered that developing a new simulation component to
visualize a new programming model would require
considerable programming efforts. This explain why
Pajé was designed to allow all of its components,
including the simulation and the visualization com-
ponents, to be generic. The genericity of Pajé allows
application programmers to define, in hierarchical
data type trees,what they would like to visualize and
how the visualized objects should be represented. The
terminology used in the Pajé input data definition[5]
is the following: the leaves and the nodes of the type
trees are calledentities and containers. Entities are
elementary objects types. Containers are higher level
object types, composed of lower level nodes and/or

leaves. In the example shown inFig. 3, entities can
be events, thread states or communications; all events
occurring in thread 1 of node 0 belong to the instance
“thread 1 of node 0” of the container type “thread” of
the type tree.

In the current implementation of Pajé, type hierar-
chies are defined in the trace files. These files con-
tain four categories of data. A meta-format is used to
describe the generic instructions and their formats as
well as the trace events and their formats. The type
tree is defined using the previously defined generic in-
structions. The last category of data is the set of events
composing the trace itself. For a tutorial example on
the Pajé input data format, seeFig. 4 and for more
details, see Ref.[5].

Four kinds of data traverse the graphs of compo-
nents: type hierarchies, instance hierarchies, entities
and data characterizing entities such as colors, names,
etc. When needed, these data are requested by visual-
ization components from the preceding components in
the data-flow graph. This is the case when a visualiza-
tion has to be recomputed, due to some user interaction
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Fig. 3. Use of a simple type hierarchy. Both sides of the figure represent a type hierarchy, an instance of this type and how this instance
can be displayed by a visualization component. The type tree also specifies how the entities are to be represented: here, communications
as arrows, thread events as triangles and thread states as rectangles.

(seeSection 5). These data traverse all filter compo-
nents inserted in the path from data source to visualiza-
tion modules. Any of these data can be altered, created
or hidden by filter components. Traces collected by an
existing tracer, such as an execution of an MPI pro-
gram traced by VampirTrace[11], can be visualized
using Pajé. An appropriate set of definitions, adapted
to the programming model of the traced program and
defining how executions are to be visualized, needs to
be provided.

4. Scalability

It is not possible to represent simultaneously all
the information that can be deduced from execution
traces. Screen space limitation is not the only rea-
son: part of the information may not be needed all
the time or cannot be represented in a graphical way
or can have several graphical representations. Giving
users a simplified view of the data and intuitive ways
to access more details from what appears to be the
cause of problems, seems to be a good way of help-

ing them to find out what these problems are. Access-
ing more detailed information at any later stage can
always lead to a more detailed view of a certain sit-
uation. As indicated inSection 3.2, filtering activity
can happen for any kind of data traversing the com-
ponent graph. Pajé offers several filtering function-
alities to help programmers in controlling this large
amount of information. Filters in Pajé can be of several
types:

• Selection. Permits the removal of entities from a
visualization. This selection can be based on the
type of visual objects (thread states, communica-
tions, etc.), on their values (of all possible thread
states, show only the running thread states) or other
user-intended actions (select which nodes, threads,
semaphores, mutexes or groups are deemed to be
more informative, seeFig. 5).

• Reduction. Provides more abstract representations
of information, for the production of synthetic
views.Fig. 5(b) and (c) shows the same execution
as (a), with only one line for nodes 1 and 2, whose
states represent the number of active threads on
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Fig. 4. Example of Pajé input data format. Comments are written in italics while the keywords of the meta-language are written in bold
font. This example does not illustrate which type of representation has been chosen for entities, which is done by selecting one of the
elementary graphical objects provided by Pajé: square, arrow, etc.

these nodes. The CPU activity of one or several
nodes can also be summarized in a pie chart (see
Fig. 6). Reduction is performed by filter compo-
nents (seeFig. 2); visual objects can be grouped
using several reduction operators computing the
average, maximum or minimum of some object
type parameter or a counter of the number of
grouped entities; these operators can be selected by
Pajé users when defining the parameters of a filter
component.

• Grouping. Nodes, threads, semaphores, mutexes can
be grouped. An object belonging to any member of
a group is shown as belonging to this group (see
Fig. 5). Grouping does not reduce the number of
objects being visualized.

• Repositioning. Allows users to choose the order in
which the objects are shown, so that, for example,
related nodes or threads can be displayed closer
together.

Being able to switchinteractively from detailed
to grouped visualizations gives programmers zoom-
ing capabilities within a node or between several
nodes. The execution of an application running on
a large-sized cluster can be observed at the group
of processors level of abstraction, until a problem
is noticed in one of the groups: it is then possi-
ble to focus on this group and, if necessary, on
one of its nodes until the origin of the problem is
found.



Fig. 5. Use of selection and grouping filters. Blocked thread states are represented in clear color; runnable states in dark color. In (a), the
events of node 0 are filtered. In (b), nodes 1 and 2 are grouped and the events of this group are filtered. In (c), the communications of
this group are also filtered. Filters are activated by the user who selects, with simple mouse clicks, the entities (thread state, activity, state,
etc.) that should appear on the screen (see selection of entity type buttons inFig. 6).
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Fig. 6. Inspection of an event.
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5. Interactivity

As indicated above, the use of all filtering func-
tionalities of Pajé is interactive. In addition, moving
forward and backward in time is entirely driven by
user-controlled time displacements. All the informa-
tion available for a displayed object can be shown in an
inspection window, created by clicking over the rep-
resentation of the object (seeFig. 6). The name of the
visual object under the pointer is also displayed on top
of the window, together with the time corresponding
to the pointer position.

Pajé keeps a relation between visual objects and
source code: from the visual representation of an
event, it is possible to display the corresponding
source code line of the parallel application being vi-
sualized (click-back). Likewise, selecting a line in the

Fig. 8. Scheduling of jobs on a large-sized cluster. Each line represents a different processor of a 100 processors cluster. The three columns
on the left identify interconnection switches, nodes and processors (there is a single processor per node in the example). Each color
represents a different user reservation.

source code browser highlights the events that have
been generated by this line (click-forward).

Interactivity implies to keep all the elementary
objects in memory—thread or semaphore states, com-
munications, events, etc. Such a constraint hinders
scalability. As a compromise for long running applica-
tions, only the data allowing the visualization of part
of an execution (in time) are kept in memory. These
data are organized in an “observation window” which
slides forward in time by including new objects de-
rived from reading the trace and “forgetting” old ones,
when a user attempts to visualize events occurring out-
side the time-frame of the current observation window
[3]. The state of the simulation is recorded at regular
intervals, so that later on it is always possible to move
back in time. In such cases, the simulation is restarted
at the closest saved state before the date of interest.
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6. Performance debugging of distributed Java
applications

Pajé was used unchanged to visualize the execution
of distributed applications by several Java virtual ma-
chines (JVM) cooperating via object-interaction[12].
Performance traces are recorded at the application as
well as at the operating system level of abstraction.
The events recorded at the application level represent
JVM activities such as method calls. The operating
system level record is due to communications between
different JVMs. Execution traces are then passed to
Pajé together with a description of the type hierarchy
to be used for the visualization (seeFig. 7). This tech-
nique allows the observation and visualization of the
dynamic behavior of distributed Java applications, in-
cluding communication, without any modification of
the application program nor of the JVM. Moreover, it
allows a temporal analysis of the hierarchy of method
invocations, represented as nested boxes.

7. System administration of large-sized clusters

Pajé could also be used unchanged to help sys-
tem administration of large-sized clusters, built from
off-the-shelf personal computers and standard inter-
connection networks[1]. System parameters such as
CPU load, number of active processes, memory us-
age and I/O’s are available on each of the nodes and
should be made available to the system administra-
tors. The filtering and grouping functionalities of Pajé
can help combining global and detailed observation of
system parameters. The behavior of the system can be
analyzed post-mortem over a certain time period: it is
possible to concentrate on fractional periods of inter-
est. It is also possible to restrict the visualization to a
subset of problematic nodes with too high or too low
CPU load, for example. System parameters are col-
lected on each node at regular time intervals and used
to build a trace file. In the beginning of this trace file
a description of the type hierarchy associated to the
visualization is inserted (Fig. 8).

8. Conclusion and future developments

Pajé makes available the most important charac-
teristics of behavioral visualization tools for a large

variety of application domains related to parallel or
distributed computing. This is enabled by its gener-
icity, allowing users to describe what they wish to
visualize and how this should be done. Recent devel-
opments are mainly concerned with the development
of new filtering capabilities, on-line visualization
and evolution of the input format. New filters and
new functionalities, allowing users to define their
own filtering capabilities, are developed. Another
functionality, allowing data to be read on-line is cur-
rently being tested. This will allow data generated
at a slow rate—such as system parameters used for
cluster administration—to be visualized in real time.
Another work in progress is to allow the format and
the hierarchical type tree definitions to be separated
from the actual trace file containing execution events.
At the same time, XML will be used to express these
definitions. Because of the modular structure of Pajé,
these extensions could be done rapidly.

The limits of Pajé were not reached so far. How-
ever, the large amount of data corresponding to trac-
ing the execution of parallel or distributed applications
running on large-sized platforms does certainly pose a
limit. Several solutions to this problem are under con-
sideration. One solution would be to parallelize the
execution of Pajé. Trace information would be kept
in separate files and processed in parallel upon re-
quest from the visualization components running on
several distributed workstations. The modular struc-
ture of Pajé, with independent components communi-
cating via well-defined protocols, should ease such a
parallelization.
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