
Paj�e, an interactive visualization tool for tuning
multi-threaded parallel applications

J. Chassin de Kergommeaux a,*, B. Stein b, P.E. Bernard c

a ID-IMAG, Project APACHE, B.P. 53, F-38041 Grenoble Cedex 9, France 1

b Departamento de Eletrônica e Computacß~ao, Universidade Federal de Santa Maria, Brazil
c Numath, INRIA Lorraine, BP 101, F-54600 Villers les Nancy, France

Received 5 March 1999; received in revised form 19 October 1999; accepted 20 January 2000

Abstract

This paper describes Paj�e, an interactive visualization tool for displaying the execution of

parallel applications where a potentially large number of communicating threads of various

life-times execute on each node of a distributed memory parallel system. Paj�e is capable of

representing a wide variety of interactions between threads. The main characteristics of Paj�e,

interactivity and scalability, are exempli®ed by the performance tuning of a molecular dy-

namics application. In order to be easily extensible, the architecture of the system was based

on components which are connected in a data ¯ow graph to produce a given visualization tool.

Innovative components were designed, in addition to ``classical'' components existing in

similar visualization systems, to support scalability and interactivity. Ó 2000 Elsevier Science

B.V. All rights reserved.

Keywords: Performance and correctness debugging; Parallel program visualization; Threads; Interactivity;

Scalability; Modularity

1. Introduction

The Paj�e visualization tool described in this article was designed to allow pro-
grammers to visualize the executions of parallel programs using a large number of

www.elsevier.com/locate/parco

Parallel Computing 26 (2000) 1253±1274

* Corresponding author. http://www-apache.imag.fr/apache.

E-mail addresses: Jacques.Chassin-de-Kergommeaux@imag.fr (J. Chassin de Kergommeaux),

benhur@inf.UFSM.br (B. Stein).
1 APACHE is a research project supported by CNRS, INPG, INRIA and UJF. This research was done

while B. Stein was on leave from U. F. de Santa Maria and supported by a CAPES-COFECUB grant.

0167-8191/00/$ - see front matter Ó 2000 Elsevier Science B.V. All rights reserved.

PII: S 0 1 6 7 - 8 1 9 1 (0 0) 0 0 0 1 0 - 7

communicating threads (lightweight processes) evolving dynamically. Combining
threads and communications is increasingly used to program irregular applications,
mask communication or I/O latencies, avoid communication deadlocks, exploit
shared-memory parallelism and implement remote memory accesses [6,7,9].
Achieving the same results using (heavy) processes, communicating through a
message-passing library such as PVM [21] or MPI [19], involves considerable pro-
gramming e�orts. All possible cases of unbalance must be predicted by the pro-
grammer of an irregular application. Masking communication and I/O latencies
requires to manage a communication automaton, on each of the nodes of the parallel
system. System (heavy) processes having disjoint address spaces are not suited for
exploiting shared memory parallelism. On the contrary, it is fairly simple to spawn
several threads to cope with the evolution of an irregular problem or mask com-
munication latencies. In addition, inner parallelism of shared memory multipro-
cessor nodes can be exploited by several threads sharing the same memory. Remote
memory accesses can be serviced by dedicated threads.

The ATHAPASCANTHAPASCAN [2,8] programming model was designed for parallel hardware
systems composed of shared-memory multi-processor nodes connected by a com-
munication network. It exploits two levels of parallelism: inter-nodes parallelism and
inner parallelism within each of the nodes. The ®rst type of parallelism is exploited
by a ®xed number of system-level processes while the second type is implemented by
a network of communicating threads evolving dynamically. The main functionalities
of ATHAPASCANTHAPASCAN are dynamic local or remote thread creation and termination,
sharing of memory space between the threads of the same node which can syn-
chronize using locks or semaphores, and blocking or non-blocking message-passing
communications between non-local threads, using ports. The visualization of the
executions is an essential tool to help tuning applications implemented using such a
programming model.

Visualizing a large number of threads raises a number of problems such as coping
with the lack of space available on the screen to visualize them and understanding
such a complex display. The graphical displays of most existing parallel programs
visualization tools [11,12,14,15,20,22,23] show the activity of a ®xed number of
nodes and inter-nodes communications; it is only possible to represent the activity of
a single thread of control on each of the nodes. It is of course conceivable to use
these systems to visualize the activity of multi-threaded nodes, representing each
thread as a node. In this case, the number of threads should be fairly limited and
should not vary during the execution of the program. The existing visualization tools
are therefore not adapted to visualize threads whose number varies continuously and
life-time is often short. The problem raised here is similar to the ``scalability''
problem arising when these tools are used to visualize the activity of a high number
of processors: the execution of ATHAPASCANTHAPASCAN programs, even using a small number
of nodes, can result in the creation of a high number of threads having a wider
variety of interactions. In addition, these tools do not support the visualization of
local thread synchronizations using mutexes or semaphores.

Some tools were designed to display multithreaded programs [10,25]. However,
they support a programming model involving a single level of parallelism within a

1254 J. Chassin de Kergommeaux et al. / Parallel Computing 26 (2000) 1253±1274

node, this node being in general a shared-memory multiprocessor. ATHAPASCANTHAPASCAN

programs execute on several nodes: within the same node, threads communicate
using synchronization primitives; however, threads executing on di�erent nodes
communicate by message passing. Compared to these systems, Paj�e ought to rep-
resent a much larger number of objects.

Paj�e was designed to be interactive, scalable and extensible. In contrast with
passive visualization tools [11,20] where parallel program entities ± communications,
changes in processor states, etc. ± are displayed as soon as produced and cannot be
interrogated, it is possible to inspect all the objects displayed in the current screen
and to move back in time, displaying past objects again. Scalability is the ability to
cope with a large number of threads. Extensibility gives the possibility to extend the
environment with new functionalities: processing of new types of traces, adding new
graphical displays, visualizing new programming models, etc. Extensibility is an
important characteristic of visualization tools to cope with the evolution of parallel
programming interfaces and visualization techniques. Therefore, the environment
ought to be extensible enough to ease the inclusion of on-line analysis facilities and
dynamic insertion of trace data. Extending one part of Paj�e should be transparent to
the other parts. Its modules should be reusable in di�erent con®gurations of the
environment.

The organization of this article is the following. Section 2 summarizes the main
functionalities of Paj�e by exemplifying its use for tuning a large application in mo-
lecular dynamics. Section 3 discusses the design of Paj�e. The two last sections present
related work and conclude.

2. Main features of Paj�e

The functionalities of Paj�e are exempli®ed by the tuning of a very large molecular
dynamics application. Decomposing the computation performed by each node in a
number of threads enabled to overlap communications with computation in a very
natural way. Using Paj�e to tune this application proved to be very helpful to improve
load balancing as well as overlapping of communicating and computing threads. In
order to visualize a program execution, it is ®rst necessary to trace an execution of
this program to produce the trace that will be used as input data by Paj�e.

2.1. Tracing of parallel programs

Execution traces are collected during an execution of the observed application,
using an instrumented version of the ATHAPASCANTHAPASCAN library. A non-intrusive, sta-
tistical method is used to estimate a precise global time reference [17]. Dated events
are causally coherent, the estimated global time being available at the end of the
instrumented application which prohibits on-line dating. This is not considered as a
drawback since traces are intended for post-mortem analysis and visualization only.
The events are stored in local event bu�ers, which are ¯ushed when full to local event

J. Chassin de Kergommeaux et al. / Parallel Computing 26 (2000) 1253±1274 1255

®les. The collection of events into a single ®le is only done after the end of the user's
application to avoid interfering with it.

The problem of perturbation of parallel applications due to the presence of a
tracing tool is a di�cult one. Although intrusion can be reduced by a careful im-
plementation of the tracing tool, it cannot be eliminated. The main causes of in-
trusion are the ¯ushing of local event bu�ers, the accumulation of the delays of each
individual event generation, as well as the extra synchronizations added to the ex-
ecuting threads. To limit the tracing intrusion, on-line compacting of events is used.
This allows a gain of space of about 50% with respect to a non-compacted repre-
sentation of events. The number of bu�er ¯ushes is signi®cantly reduced and so is the
perturbation of the application. To further limit the intrusion of the traced threads,
the management of event bu�ers is performed by a speci®c low priority thread.

Finally, to allow users to quickly ®nd the statement in their source code which
generated a particular event, recorded events may contain the line number of that
statement and the identi®er of the source code ®le. This feature is used by Paj�e to
implement source code click-back.

2.2. Visualization of threads in Paj�e

The visualization of the activity of multi-threaded nodes is performed by a space-
time diagram. This diagram (see Fig. 1) combines in a single representation the states
and communications of each thread (among other things, discussed later). The
horizontal axis represents time while threads are represented in the vertical axis,
grouped by node. The space allocated to each node of the parallel system is

Fig. 1. Visualization of an ATHAPASCANTHAPASCAN program execution. Blocked thread states are represented in

clear color; runnable states in a dark color. The smaller window shows the inspection of an event.

1256 J. Chassin de Kergommeaux et al. / Parallel Computing 26 (2000) 1253±1274

dynamically adjusted to the number of threads being executed on this node. Com-
munications are represented by arrows while the states of threads are displayed by
rectangles. Colors are used to indicate either the type of a communication, or the
activity of a thread. It is not the most compact or scalable representation, but it is
very convenient for analyzing detailed threads relationship, load distribution and
communication latency masking. Paj�e deals with the scalability problem of this
visualization by means of ®lters, discussed later in Sections 2.9 and 3.4.

The user can move the view backward and forward in time, within the boundaries
of the time window currently managed by Paj�e. When it is needed to move beyond
the initial boundary of the current time window, a previously recorded state of the
simulator is restored and the trace is simulated again, until the period of interest is
reached.

2.3. Molecular dynamics application

The molecular dynamics application simulates the movement of atoms of proteins
[1]. It consists of repeatedly computing the successive positions in time of the atoms
of a given system, starting from their initial positions and speeds. The positions of
the atoms are computed using Newton's motion equation: the forces taken into
account are non-bound electrical and Van der Waals forces as well as bound forces
modeling the cohesion of molecules. This application is able to cope with large
molecular structures of proteins. We have simulated the movement of the largest
protein structure found in the Brookhaven Protein Data Bank: b-galactosidase
[13]. After immersion of the protein of about 65 240 atoms into a 100 �A radius sphere of
water, we obtain a system of 430 000 atoms. The size of this system is more than four
times bigger than the size of the systems handled by other current MD program.

The calculation of the forces between each pair of atoms constitutes the main
bottleneck of the computation of an iteration of this molecular dynamics applica-
tion. In order to decrease the volume of computations, only the interactions of each
atom with its neighbors were considered, i.e., only with the atoms included in a cut-
o� sphere of a given radius. This approximation makes the problem irregular from
the parallelism point of view: the pairs of atoms for which it is necessary to compute
a force depend on the position of the atoms in the system. However, the problem has
a good data locality.

2.4. Parallelization of the application

A traditional parallelization for the simulation of a great number of atoms con-
sists in mapping part of the simulated space on each node. Each node deals with the
movements of the atoms belonging to its part of the simulated space. To compute
the forces exerted on its atoms, it exchanges the positions of the atoms close to the
border of its portion of space with the nodes in charge of the neighbor spaces.

Each node computes the forces which are exerted between the atoms of its do-
main. And, in agreement with the nodes in charge of the neighbor spaces, it com-
putes part of the forces which are exerted between its atoms and the atoms of the

J. Chassin de Kergommeaux et al. / Parallel Computing 26 (2000) 1253±1274 1257

border of its domain. The nodes then exchange the forces which are exerted between
the atoms at the border of their domain.

Lightweight processes allow the exploitation of ®ne grain concurrency and au-
tomatic overlap of communication overhead and computation. In our case, a thread
deals with the computation of the forces between the atoms of its domain. It requires
only the local data of the node. It is then possible to mask the time of the com-
munications of coordinates and forces with other nodes. Only synchronizations
between the threads of a node needs to be described. These synchronizations depend
on the access to the shared data. Then, during the execution, the scheduling of the
threads will automatically overlap the communication overhead with the local
computations.

The following section describes more precisely the role of each thread in an it-
eration of molecular dynamics, and establishes a link with the threads of the trace.

2.5. Parallel solution using threads

On a node p, a simulation is performed by the following threads:
· Main thread. It manages the access to the data shared with the other local threads.

More precisely, it manages the synchronization of the threads between the various
read/write phases of the data of its atoms. It also computes part of the forces of
interaction relative to the geometry of the molecules of the system. Finally it inte-
grates the equations of movement for its atoms. On the traces of Figs. 2(a) and (b),
it is the uppermost thread of each node.

· Threads that send coordinates and receive forces. There exists on node p a copy of
this kind of thread for each neighbor node (a node is a neighbor of p if it has a part
of the space close to the one of p). These threads send the coordinates of the atoms
and receive the forces computed on the corresponding neighbor nodes. The sec-
ond, third and fourth threads (from the top) of each node on the traces of
Figs. 2(a) and (b) are of that type.

· Threads that compute the inter-nodes forces. There also exists a copy of this kind of
thread for each neighbor node. They are in charge of receiving the coordinates of
the atoms, computing the forces between the atoms of two di�erent nodes and
sending back the computed forces. The ®fth, sixth and seventh threads (from
the top) of each node on the traces of Figs. 2(a) and (b) are of that type.

· Thread that computes the local forces. It computes the forces between the atoms of
node p. This is the thread on top of the lower-most one on each node in Figs. 2(a)
and (b).

· Thread of control. It communicates control information for the simulation be-
tween node p and the main node. This is the lower-most thread on each node in
Figs. 2(a) and (b).

Remark. It is always possible to relate a visual object ± thread state for example ±
with the corresponding instruction of the parallel program whose execution is being
displayed. However, to ease the identi®cation of the threads of the program, it would
be nicer to design them by some user-de®ned name such as ``Main'', or ``Control'', etc.

1258 J. Chassin de Kergommeaux et al. / Parallel Computing 26 (2000) 1253±1274

Fig. 2. Visualization of an iteration of the molecular dynamics program: (a) With random placement of

domains ± nodes 1 and 4 wait a long time for forces computed by node 3 (only communications involving

node 4 are shown) and (b) with a better placement of domains, all nodes work all the time.

J. Chassin de Kergommeaux et al. / Parallel Computing 26 (2000) 1253±1274 1259

This is not currently possible with the ATHAPASCANTHAPASCAN library whose functionalities are
a subset of the pthread standard. Such a facility could be easily added to ATHAPA-THAPA-

SCANSCAN, the symbolic thread identi®cation been stored in the attributes of each thread
(setspeci®c function of the pthread standard). This possibility is already used by the
ATHAPASCANTHAPASCAN tracer and Paj�e to number threads in order to identify correspondants,
since the thread identi®cation provided by the pthread standard is an opaque type,
unmanageable by the tracer and the visualizer.

2.6. Visualization of the application

A detailed visualization of the lightweight processes gives an invaluable help to
the programmer, allowing him:
· to check the coherence of the synchronizations between the threads sharing data

on a given node;
· to check the balancing of load between nodes and thus to contribute to the devel-

opment of good mapping heuristics.
Figs. 2(a) and (b) represent two traces of execution of an iteration of molecular
dynamics using two di�erent placements of computational load. On these traces,
node 0 is used only to control the simulation. Fig. 2(a) represents a trace of execution
with a random initial mapping of the tasks on the nodes. The computational load is
unbalanced. One can see on the highlighted portion of the trace that the less loaded
nodes (nodes 1 and 4) are waiting for the other, more loaded, node (node 3).

Fig. 2(b) represents a trace of execution that uses an initial mapping heuristic that
balances the computation load and minimizes the communication volume. Here, one
can see that during an iteration, the nodes work all the time and ®nish their iteration
at the same time. One can also observe how the thread that computes local forces
overlaps the communications of the other threads.

2.7. Visualization of local synchronizations

ATHAPASCANTHAPASCAN provides primitives that allow the synchronization between
threads of a node. These primitives are the classical semaphores and mutual exclu-
sion locks (mutexes). In the space-time diagram of Paj�e, the states of semaphores and
locks are represented just like the states of threads: each possible state is associated
with a color, and a rectangle of this color is shown in a position corresponding to the
period of time when the semaphore was in this state. Paj�e recognizes three di�erent
states for a semaphore: when there is some thread blocked in it, when a thread will
block in it if it issues a ``P'' operation, and when a thread can issue a ``P'' operation
without blocking. An example of the visualization of some semaphore operations
can be seen in Fig. 3.

Unlike semaphores, locks have ownership, that is, at most one thread at a time
can hold a lock. Other threads block if they try to hold it, until the lock is released by
the thread that holds it. Based on this behavior, there is a second way of representing
locks in the space-time diagram. In this representation, each lock is associated with a
color, and a rectangle of this color is drawn close to the thread that holds it (as

1260 J. Chassin de Kergommeaux et al. / Parallel Computing 26 (2000) 1253±1274

shown on the right of Fig. 3). Also, to ease the identi®cation of the threads that are
blocked waiting for a lock, a di�erent rectangle with the color of the lock is displayed
close to these threads (not shown in Fig. 3).

2.8. Interactivity

In non-interactive visualization tools, users can only control the simulation speed.
In contrast, Paj�e gives the possibility to move in time. Progresses of the simulation
are entirely driven by user-controlled time displacements. At any time during a
simulation, it is possible to move backward in time to a previous state. Moving
around the current simulation state is fast, while moving to a remote position can
take longer (see Section 3.3.1). In addition, Paj�e o�ers many possible interactions to
programmers: displayed objects can be inspected to obtain more detailed informa-
tion, identify related objects or check the corresponding source code.

Not all the information that can be deduced from a trace ®le is directly repre-
sentable (or its simultaneous representation may not be desirable) in the space-time
diagram. More information can be obtained upon user request. All the information
available for a displayed object can be shown in an inspection window, created by
clicking over the representation of the object. Such an inspection of an event in
ATHAPASCANTHAPASCAN is shown in Fig. 1.

Another very useful information is the interrelation between the entities of the
diagram. For example, the color of a thread state indicates that this thread is blocked
in a semaphore during some time period, but the identi®cation of the semaphore is
not immediate. Representing this information permanently on the screen would
clutter the visualization. In Paj�e, moving the mouse pointer over the representation
of this blocked state highlights the corresponding semaphore state, allowing an

Fig. 3. Visualization of semaphores. Note the highlighting of a thread blocked state because the mouse

pointer is over a semaphore blocked state, and the arrows that show the link between a ``V'' operation in a

semaphore and the corresponding unblocking of a thread.

J. Chassin de Kergommeaux et al. / Parallel Computing 26 (2000) 1253±1274 1261

immediate recognition (see Fig. 3). Similarly, all threads blocked in a semaphore are
highlighted when the pointer is moved over the corresponding state of the sema-
phore. The name of the state under the pointer is also displayed on the top of the
window, together with the time corresponding to the pointer position. Many similar
relations are displayed in this way in Paj�e.

Paj�e keeps a relation between visual objects and source code: from the visual
representation of an event, it is possible to display the corresponding source code line
of the parallel application being visualized. Likewise, selecting a line in the source
code browser highlights the events that have been generated by this line.

2.9. Filtering of information and zooming capabilities

It is not possible to represent simultaneously all the information that can be
deduced from the execution traces. Screen space limitation is not the only reason:
part of the information may not be needed all the time or cannot be represented in
a graphical way or can have several graphical representations. Giving users a
simpli®ed, abstract view of the data and easy, intuitive ways for them to access
more details from what seems to be the cause of problems, seems to be a good way
of helping them ®nd out what these problems are. Accessing more detailed infor-
mation can amount to exploding a synthetic view into a more detailed view or
getting to data that exist but have not been used or are not directly related to the
visualization.

Paj�e o�ers several ®ltering and zooming functionalities to help programmers cope
with this large amount of information. Filters in Paj�e can be of several types:
· Grouping. Nodes, threads, semaphores, mutexes can be grouped. An object be-

longing to any member of a group is shown as belonging to this group (see Fig. 4).
· Selection. Permits the removal of objects from a visualization. This selection can

be based on the type of a visual object (not shown events, thread states, commu-
nications, etc), on its subtype (of all possible thread states, show only the ones that
represent a running thread) or on some speci®c instance (select which nodes,
threads, semaphores, mutexes or groups to show, see Fig. 4).

· Repositioning. Allows users to choose the order in which the objects are shown, so
that, for example, related nodes can be displayed close together. Paj�e has a repo-
sitioning ®lter that reuses the screen space made available by the termination of
objects such as short-living threads (see Fig. 5(a) and (b)).

· Reduction. Provides more abstract representations of information, for the produc-
tion of synthetic views. Fig. 6 shows the same execution as Fig. 2(b), with only one
line per node, containing states that represent the number of active threads at each
instant. It also shows a pie graph of CPU activity in the time slice selected in the
space-time diagram.

· Visual changes. The correspondence between the type of an entity and the color,
shape and size of its graphical representation can be personalized by a user, and
is remembered by Paj�e across executions.

Being able to switch from detailed to grouped visualizations gives programmers
zooming capabilities within a node or between several nodes.

1262 J. Chassin de Kergommeaux et al. / Parallel Computing 26 (2000) 1253±1274

3. Design of the visualization environment

For a visualization environment to be really useful, it needs to be easily adaptable
to changes. These changes can be in the paradigms used by the parallel programming
environment, in new user needs of di�erent capabilities and di�erent visualizations,
or even in the format of trace ®les. To be able to resist to these changes, Paj�e is

Fig. 4. Use of grouping and selection ®lters. In ®gure (a), the events of node 0 are ®ltered. In ®gure (b),

nodes 1 and 2 are grouped and the events of this group are ®ltered. In ®gure (c), the communications of

this group are also ®ltered.

J. Chassin de Kergommeaux et al. / Parallel Computing 26 (2000) 1253±1274 1263

organized as a graph of independent components, communicating exclusively by well
de®ned and extensible protocols. Besides ``classical'' components existing in similar
visualization tools, original components were developed to support interactivity and
zooming capabilities.

Fig. 5. Reusing the space of short-lived threads: (a) View of a program with short-lived threads and

(b) same program, reusing the space of terminated threads.

Fig. 6. CPU utilization. Grouping the threads of each node to display the state of the whole system

(lighter colors mean more active threads); the pie-chart shows the percentage of the selected time slice

spent with each number of active threads in each node.

1264 J. Chassin de Kergommeaux et al. / Parallel Computing 26 (2000) 1253±1274

3.1. Graph of components

To ease the extensibility of the environment, it is developed in a very modular
way, similarly to Pablo [20]. Each component is an independent object, that com-
municates with others through communication links, building a coarse grain data-
¯ow graph. The vertices of the graph are analysis components while its arcs are
communication links. Data traveling on the arcs are objects representing the entities
± events, thread states, communications, etc. ± of the analyzed program (see Fig. 7).
A given visualization environment is made by connecting the available components
in a graph representing the way the data will be analyzed.

Contrary to Pablo, the graph of components in Paj�e is not a pure data-¯ow graph:
some components are connected by bidirectional links for the exchange of control
signals. The control ¯ow graph is mainly required by the implementation of inter-
activity in Paj�e. The control ¯ow and its interaction with the data ¯ow are described
in Section 3.3.

Fig. 7 represents an example of a simple data-¯ow graph, including a trace reader,
a simulator, a statistics and a visualization module. The trace is read from the trace
®le by the trace reader which produces objects representing the events produced by
the analyzed program. These events are used by the simulator to simulate the activity
of the traced program and produce objects representing more abstract entities such
as semaphore states, communications, etc. These objects are eventually used by the
statistics module as well as by the visualization module.

Fig. 7. Example data-¯ow graph. The trace reader produces event objects from the data read from disk.

These events are used by the simulator to produce more abstract objects, like thread states, communi-

cations, etc., traveling on the arcs of the data-¯ow graph to be used by the other components of the

environment.

J. Chassin de Kergommeaux et al. / Parallel Computing 26 (2000) 1253±1274 1265

The modules share a common interconnection interface and a common protocol
for accessing the data in each entity (see Section 3.3.2). These two characteristics
allow the extension of the environment by the addition of new components to the
graph. Also, where possible, components were designed with no semantical knowl-
edge of the data they process. This independence with respect to input data, com-
bined with a well-de®ned protocol for data access, makes the components easily
reusable for processing di�erent types of entities produced by the parallel program
(even those de®ned by the user).

3.2. Classical components

Most of the components of our environment can be found in other existing
visualization environments [20]: controller, trace readers, simulators of parallel
programs, etc.
· Controller. This module is always present. It is not inserted in the data-¯ow

graph and therefore is not visible on Fig. 7. It is the ®rst module to be executed.
It dynamically loads and connects the other modules according to an environ-
ment con®guration ®le. Then it manages the user interface as well as the use
of memory.

· Trace readers. Readers for two versions of ATHAPASCANTHAPASCAN-0 and for the Alog trace
format used by the upshot tool [12] and the IBM SP/1 tracer [23] have been imple-
mented.

· Simulator. Analyzing the events produced by the trace reader, the simulator pro-
duces the thread states, communications, links, semaphore and mutex states. It
can register a complete simulation state so that it is possible to move back in time
before the limit of the current observation window (see Section 3.3.1). Besides sim-
ulating the events de®ned by ATHAPASCANTHAPASCAN-0, the simulator allows the de®nition
of user events, states and communications. This is a powerful mechanism to easily
extend the types of objects that can be visualized by Paj�e.

3.3. Implementation of interactivity

Structuring the environment as components of a data-¯ow diagram is well suited
for the implementation of modules needing a single access to the information derived
from the trace. An example is the module that computes the CPU usage of nodes.
This module checks the type of the objects produced by the simulator. If the object is
a running state, its duration is added to an accumulator associated to the object's
node. Then, the thread state object does not need to be accessed anymore. Another
example is a passive visualization module that, for each object, displays a corre-
sponding visual representation that cannot be interrogated nor changed. After being
displayed, the object is not accessed anymore. However, interactive modules need
to access the data objects several times. In a normal data-¯ow graph, a module
receives each data object independently. In this case, it should either store the
objects or fetch them again each time they are needed. The ®rst solution would
result in added complexity of such modules, to manage a large volume of data, as

1266 J. Chassin de Kergommeaux et al. / Parallel Computing 26 (2000) 1253±1274

well as data replication if more than one module of this type were used. The second
solution would result in added computation costs to read and simulate the trace
several times.

3.3.1. Observation window and compounding component
To overcome the contradiction between having Paj�e built from a data-¯ow graph

of components for extensibility, and the requirement of being able to access ele-
mentary visual data objects several times, the elementary objects produced by the
simulator and used for visualization are kept in a complex data structure called
observation window. Elementary objects are elementary events recorded during the
observed execution, states of threads and semaphores between two events, com-
munications, etc. Within this observation window, it is possible to move back and
forth in time, without having to re-simulate the observed execution, because the
objects are directly accessible in memory. The observation window slides forward in
time by including new objects and ``forgetting'' old ones, when the user attempts to
visualize after the end of the current observation window. The state of the simulation
is recorded at regular intervals of simulation time, so that later it is possible to move
past in time, outside the observation window. In such cases, simulation is restarted
from the closest saved state, before the date of interest.

The observation window object is built by the compounding component, from el-
ementary objects produced by the simulator. The compounding component breaks
the pure data-¯ow graph aspects of the graph of components: it does not output the
data that it generates. Instead, each elementary object input by the compounding
component is linked to the observation window. After the compounding component,
the ¯ow of information on the graph, instead of being simply triggered by data
availability, is explicitly activated by control messages; the data ¯ows on demand,
only when requested by a component. Control messages can go in both directions
(see Fig. 8).

Fig. 8. Compounding component and observation window. The compounding component organizes the

access by other components to all elementary entities (events, states, communications) produced by the

simulator through the use of an observation window. After the compounding component, components are

linked by control links, instead of data links used before it.

J. Chassin de Kergommeaux et al. / Parallel Computing 26 (2000) 1253±1274 1267

3.3.2. Control messages
There are two kinds of control messages in Paj�e: messages that go forward in the

graph, called noti®cations and messages that go backwards, called queries. Noti®-
cations inform other components that data has changed, for example that the ob-
servation window was slid or that the hierarchical structure of elementary objects
was changed, etc. Queries are used by data-consuming components (such as a vi-
sualization component) to obtain information about the data encapsulated in the
observation window. As there are many types of information in the observation
window, there are many kinds of queries to:
· get global information about the execution or about the observation window

(number of nodes, maximum number of threads in each node, hierarchical struc-
ture of elementary objects, etc.);

· get some of the elementary objects, chosen by time and type: e.g. all events in
thread 1 of node 7 between 3.2 and 4.3 s of execution;

· get more information concerning an elementary object, such as the node it belongs
to, its timing, shape or color, other objects related to it, etc.;

· ask for the inspection of an elementary object-used by visualization components
when the user selects a graphical representation of an elementary object; the visu-
alization component does not need to know all the details of the inspected object.

All the complexity of storing and accessing the large quantity of data generated from
the trace is isolated in the observation window. Besides simplifying the construction
of data-consuming modules, centralizing access to data has some other advantages
for the construction of ®lters (see Section 3.4) and for the management of memory by
the controller component. Every time a component queries for data that is not in the
current observation window, the compounding component informs the controller
component, that can restart data-¯ow reading and analysis of the traces until the
needed data is linked to the observation window.

3.3.3. Data structure of the observation window
Because it encapsulates such a large number of elementary objects, which need to

be searched very frequently during the visualization of a parallel program execution,
the structure of the observation window favors e�cient search. The number of el-
ementary objects involved during a visualization may be very large. For example in
the programs tested so far, up to 104 events per second of execution time per node
were produced, generating a larger number of elementary objects.

The most frequent accesses to the observation window are done to search the
object currently pointed to by the cursor on the screen: moving the mouse of one
pixel may involve searching the entire observation window for the new object
pointed to by the cursor. Other frequent accesses are performed to identify the
objects to be displayed on the screen, given the dates of the events located on the
screen boundaries.

Within an observation window, data is structured hierarchically into containers
such as threads or semaphores. It is very important for this structure to be easily
recon®gurable for ®ltering (see Section 3.4) and extensibility reasons. Within a
container, two types of elementary objects exist: ``instantaneous'' objects, such as

1268 J. Chassin de Kergommeaux et al. / Parallel Computing 26 (2000) 1253±1274

elementary events, and ``non-instantaneous'' objects such as thread states and
communications, which can, in the worst case, last during the entire visualization
and be displayed each time a new display is computed. The observation window is
organized as a hierarchy of tables (see Fig. 9). The types and containers tables are
organized as hash tables, whose access is thus performed in constant time (O�1�).
The instantaneous objects of each container are stored in a table sorted by date and
whose access is thus performed in logarithmic time.

Providing e�cient accesses to non-instantaneous data objects involved consider-
able design and programming e�orts: several data organizations were designed and
compared [5]. In the most naive organization, data were sorted by initial date, re-
sulting in a worst case search of all objects. In the data structure selected for Paj�e,
non-instantaneous data objects of each container are grouped in time slices, an
object belonging to the time slice corresponding to its creation date. Within each
time slice, data are sorted by termination date. Using such a data structure, it is
possible to eliminate rapidly the non-instantaneous objects irrelevant to the current
time period being represented on the screen (see Fig. 10). The number of time slices
was selected by measuring the search time of an object in the observation window, as
a function of the number of slices and of the position of the searched object in the
slice, for various numbers of events in the observation window and various durations
of the time interval of interest (value of t2 ÿ t1).

3.4. Filters

Visualization modules fetch data from the observation window each time they
compute a new visualization. Filter components select or transform the data to
implement the ®ltering and zooming functionalities described in Section 2.9. Filters

Fig. 9. Structure of an observation window. Types and containers are stored in hash tables. Instantaneous

objects are sorted by date. Non-instantaneous objects are grouped in time slices, depending on their initial

date. Within each time slice, they are sorted by termination date.

J. Chassin de Kergommeaux et al. / Parallel Computing 26 (2000) 1253±1274 1269

transform the replies from the compounding component to the queries of the visu-
alization components, without modifying the observation window data. A visual-
ization component connected to a ®lter obtains all information concerning
elementary objects indirectly by querying the ®lter. Filters can be modi®ed or de-
activated dynamically: visualization components a�ected by these changes are no-
ti®ed so that they can update their visualizations; this updating being performed
from ®ltered data, it will therefore take into account the latest ®ltering modi®cation.

Filters can easily be connected to the graph, anywhere in the path from the
compounding component to a data-consuming component. Fig. 11 shows a graph
with two visualizations, one accessing the raw data from the observation window
and another accessing this data through a ®lter.

A ®lter does not generate a new object for each elementary object, nor does it alter
the elementary objects. Instead, ®ltered data is produced only when requested. Other
possible implementations of ®ltering (considering a data-¯ow graph and the need of
access to the data for interactivity) would result either in duplication or modi®cation
of the elementary objects of the current observation window, the former resulting in
high memory consumption and the latter being unsuitable for the situation in which
a module would use ®ltered data while another would use them non-®ltered.

4. Related work

A large number of tools have been developed to visualize the execution of parallel
programs. In most tools, the number of processes remains constant during a simu-
lation: they are not adapted to the visualization of parallel programs creating pro-

Fig. 10. Organization of non-instantaneous data objects within a container. Each object is represented by

a point whose X- and Y-coordinates are the creation and termination dates. The objects of interest are

located in the light grey area. The objects located in the dark grey area are searched while they are not

wanted. A lot fewer non wanted objects are searched in the retained data organization (right) than in the

naive one (left).

1270 J. Chassin de Kergommeaux et al. / Parallel Computing 26 (2000) 1253±1274

cesses dynamically, such as multi-threaded programs. Many visualization tools are
not interactive, only giving the possibility to adjust the simulation speed, it is not
possible to interact with the displayed objects nor to move backwards in time. The
most widespread of these tools is Paragraph [11], which provides a large number of
possible views. Although the number of processes may be high, Paragraph does not
scale well, since most views become hard to understand when the number of pro-
cesses is high. Pablo [20] is an extremely powerful visualization environment whose
architecture inspired Paj�e's. The architecture of Pablo is based on an extensible
graph of components which can be connected to produce a given visualization tool.
A large number of components were developed, providing a wide number of visual
or sound representations. Its graph of components, being a pure data-¯ow graph, is
simpler to modify than that of Paj�e, at the expense of not supporting interactivity. A
form of scalability is provided by switching automatically from trace recording to
counting when the volume of traces passes some threshold. The main visualization of
the AIMS system [24] is a space-time diagram that represents the execution of a
parallel program on a possibly large number of nodes, showing the functions exe-
cuted at each period and the communications between nodes. From this visualiza-
tion, source code can be inspected. The Paradyn performance debugging
environment [18] was designed to identify performance errors automatically.
Performance data is monitored online to adjust the amount of performance data
collected: more data is collected where a performance problem is expected.
Non-interactive histogram and bar-chart visualizations are provided.

Several visualization tools provide some form of interactivity since it is possible to
inspect the displayed objects or to relate a given visualization to the source code.
This is the case of the upshot visualization tool [12,23] which also gives the possibility

Fig. 11. A ®lter component. Visualization A has a direct access to the compounding component,

obtaining non-®ltered data from the observation window. Visualization B queries data from the ®lter,

obtaining a ®ltered view of the same data.

J. Chassin de Kergommeaux et al. / Parallel Computing 26 (2000) 1253±1274 1271

to move past in time, provided that the entire trace is available in main memory.
Atempt [14] can be used to change the order of events in order to test di�erent ex-
ecution paths in conjunction with other tools. An ATHAPASCANTHAPASCAN-0 reader was im-
plemented for Atempt, each thread being represented as a di�erent process, thus
giving the possibility to visualize ATHAPASCANTHAPASCAN-0 programs executions involving a
limited number of threads since there is no support for representing dynamically
created processes. VAMPIR [15] is a visualization tool designed for MPI programs.
Program executions are represented as a time-line view including processor states
and communications. Being designed for MPI, VAMPIR assumes a constant
number of processes during a visualization session. The NTV trace visualizer [16]
shows processor states and communications in a time-line visualization. Annai [3] is
an integrated environment for developing and debugging parallel programs. One of
its visualizations is a space-time diagram that can show the states and communi-
cations of various processors, possibly combined with some other time-varying
quantities, like memory consumption.

To the authors' knowledge, only two visualization tools were conceived with
support for multi-threaded programs where the number of threads varies dynami-
cally during the execution of a program. In Gthread [25], the execution of threads
and their synchronizations can be visualized. However, threads must be located on a
single node and have no other form of communication than local synchronization
(no message passing). Gransim [10] is a visualization tool of a parallel functional
language (Glasgow Parallel Haskell) simulator. As in ATHAPASCANTHAPASCAN, dynamically
created threads can be executed by each of the nodes of the simulated system. It is
possible to visualize the global activity of all nodes of the system or the activity of the
threads of a particular node. Gransim is di�erent from other visualization tools since
it produces its visualizations as printable ®les. In addition, it has no representation
for communications and synchronizations.

5. Conclusion

Paj�e provides solutions to interactively visualize the execution of parallel appli-
cations using a varying number of threads communicating by shared memory within
each node and by message passing between di�erent nodes. The most original fea-
tures of the environment are interactivity and scalability. These properties were
achieved ± without sacri®cing other ``desirable'' properties of a visualization envi-
ronment, such as extensibility and reusability ± by a very careful modular design and
the use of sophisticated data structures. The Paj�e environment is structured as a
graph of independent and reusable software components connected by data- and
control-¯ow relations. Interactivity and scalability are mainly supported by a com-
plex data structure called the observation window and produced by a compounding
component. Using the observation window, it is possible to compute the displays
requested by users rapidly enough so that the response time of the tool remains
good. The compounding component can be combined with various ®lter compo-
nents operating on the observation window, in order to o�er to users zooming

1272 J. Chassin de Kergommeaux et al. / Parallel Computing 26 (2000) 1253±1274

capabilities between several observation levels. Such zooming capabilities give the
environment its scalability since it is possible to observe the execution of a parallel
program on a large system at high level of abstraction, without missing details which
can be observed by zooming on a particular node or group of nodes.

Future work includes the development of new visual components, both classical
ones and higher level representations of the ATHAPASCANTHAPASCAN programming model (call
graph, data structures, etc.). Another foreseen extension concerns the coupling of
Paj�e with a distributed symbolic debugger such as DDBG developed at UNL [4] to
provide a high level debugging interface for ATHAPASCANTHAPASCAN programs.

Acknowledgements

Florin Teodorescu designed a prototype thread visualization tool. Philippe Waille
implemented the ATHAPASCANTHAPASCAN tracer. The anonymous referees helped improving
the paper by their useful comments. All APACHEPACHE project research reports are
available at http://www-apache.imag.fr.

References

[1] P.-E. Bernard, B. Plateau, D. Trystram, Using threads for developing parallel applications: molecular

dynamics as a case study, in: R. Trobec (Ed.), Parallel Numerics, Gozd Martuljek, Slovenia,

September 1996, pp. 3±16.

[2] J. Briat, I. Ginzburg, M. Pasin, B. Plateau, Athapascan runtime: e�ciency for irregular problems, in:

C. Lengauer et al. (Eds.), EURO-PAR'97 Parallel Processing, volume 1300 of LNCS, Springer,

Berlin, August 1997, pp. 591±600.

[3] C. Cl�emencßon, A. Endo, J. Fritscher, A. M�uller, B.J.N. Wylie, Annai scalable run-time support for

interactive debugging and performance analysis of large-scale parallel programs, Technical Report

CSCS-TR-96-04, Centro Svizzero di Calcolo Scienti®co, CH-6928 Manno, Switzerland, April 1996.

[4] J.C. Cunha, J. Lourencßo, An experiment in tool integration: the DDBG parallel and distributed

debugger, EUROMICRO Journal of Systems Architecture, Second Special Issue on Tools and

Environments for Parallel Processing, 1997.

[5] B. de Oliveira Stein, Visualisation interactive et extensible de programmes parall�eles �a base de

processus l�egers, Ph.D. Thesis, Universit�e Joseph Fourier, Grenoble, 1999, http://www-media-

theque.imag.f (in French).

[6] T. Fahringer, M. Haines, P. Mehrotra, On the utility of threads for data parallel programming, in:

Proceedings of the Nineth International Conference on Supercomputing, Barcelona, Spain, 3±7 July,

ACM Press, New York, 1995, pp. 51±59.

[7] I. Foster, C. Kesselman, S. Tuecke, The nexus approach to integrating multithreading and

communication, Journal of Parallel and Distributed Computing 37 (1) (1996) 70±82.

[8] I. Ginzburg, Athapascan-0b: Int�egration e�cace et portable de multiprogrammation l�eg�ere et de

communications, Ph.D. Thesis, INPG, September 1997 (in French).

[9] M. Haines, W. B�ohm, An initial comparison of implicit and explicit programming styles for

distributed memory multiprocessors, in: H. El-Rewini, B.D. Shriver (Eds.), Proceedings of the 28th

Annual Hawaii International Conference on System Sciences, volume 2: Software Technology, Los

Alamitos, CA, January 1995, IEEE Computer Society Press, Silver Spring, MD, pp. 379±389.

[10] K. Hammond, H. Loidl, A. Partridge, Visualising granularity in parallel programs: a graphical

winnowing system for haskell, in: A.P.W. Bohm, J.T. Feo (Eds.), High Performance Functional

Computing, April 1995, pp. 208±221.

J. Chassin de Kergommeaux et al. / Parallel Computing 26 (2000) 1253±1274 1273

[11] M.T. Heath, Visualizing the performance of parallel programs, IEEE Software 8 (4) (1991) 29±39.

[12] V. Herrarte, E. Lusk, Studying parallel program behavior with upshot, 1992, http://www.mcs.anl.gov/

home/lusk/upshot/upshotman/upshot.html.

[13] R. Jacobson, X.-J. Zhang, R. DuBose, B.W. Matthews, Three-dimensional Structure of

b-galactosidase from E. coli, Nature 369 (1986) 761±766.

[14] D. Kranzlmueller, R. Koppler, S. Grabner, C. Holzner, Parallel program visualization with MUCH,

in: L. Boeszoermenyi (Ed.), Third International ACPC Conference, volume 1127 of Lecture Notes in

Computer Science, Springer, Berlin, September 1996, pp. 148±160.

[15] W. Krotz-Vogel, H.-C. Hoppe, The PALLAS portable parallel programming environment, in:

L. Bouge, P. Fraigniaud, A. Mignotte, Y. Robert (Eds.), Second International Euro-Par Conference,

volume 1124 of Lecture Notes in Computer Science, Lyon, France, August 1996, Springer, Berlin,

pp. 899±906.

[16] L. Lopez, The NAS Trace Visualizer (NTV) Rel. 1.2 User's Guide, September 1995, http://

science.nas.nasa.gov/Pubs/TechReports/NASreports/NAS-95-018/NAS-95-018.ps.

[17] �E. Maillet, C. Tron, On e�ciently implementing global time for performance evaluation on

multiprocessor systems, Journal of Parallel and Distributed Computing 28 (1995) 84±93.

[18] B.P. Miller, M.D. Callaghan, J.M. Cargille, J.K. Hollingsworth, R.B. Irvin, K.L. Karavanic,

K. Kunchithapadam, T. Newhall, The Paradyn parallel performance measurement tool, Computer

28 (11) (1995) 37±46.

[19] MPI Forum, MPI: a message-passing interface standard, Technical Report, University of Tennessee,

Knoxville, 1995.

[20] D.A. Reed et al., Scalable performance analysis: the Pablo performance analysis environment, in:

A. Skjellum (Ed.), Proceedings of the Scalable Parallel Libraries Conference, IEEE Computer Society,

Silver Spring, MD, 1993, pp. 104±113.

[21] V. Sunderam, PVM: a framework for parallel distributed computing, Concurrency: Practice and

Experience 2 (4) (1990) 315±339.

[22] B. Topol, J.T. Stasko, V. Sunderam, The dual timestamping methodology for visualizing distributed

applications, Technical Report GIT-CC-95-21, Georgia Institute of Technology, College of

Computing, May 1995.

[23] C.E. Wu, H. Franke, UTE User's Guide for IBM SP Systems, 1995, http://www.research.ibm.com/

people/w/wu/uteug.ps.Z.

[24] J. Yan, S. Sarukkai, P. Mehra, Performance measurement, visualization and modeling of parallel and

distributed programs using the AIMS toolkit, Software ± Practice and Experience 25 (4) (1995)

429±461.

[25] Q.A. Zhao, J.T. Stasko, Visualizing the execution of threads-based parallel programs, Technical

Report GIT-GVU-95-01, Georgia Institute of Technology, 1995.

1274 J. Chassin de Kergommeaux et al. / Parallel Computing 26 (2000) 1253±1274

